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In this paper we investigate two possibilities of improving the effectiveness 
of the Bubnov-Galerkin (*) method when applied to the characteristic value 
problems. The two methods are the following: the first one attempts this 
by improving the rate convergence of the method, while the other uses a 
numerical approach in a form suitable for computer processing, to the solu- 
tion of the charcteristic equation. The results obtained are used to solve 
the problem of the stability of a plane Poiseuille flow. 

1. Let us consider Equation 

in the Hilbert space 
in li , and Equation 

which is a conjugate 

cp - hKq = 0 (1.1) 

19 , where the operator K is completely continuous 

'p - hK*cp= 0 (1.2) 

of (1.1). 

Weooshall apply the B.-G. method to (1.1) and we shall take the system 
iUkh 9 orthonormal in H as a base set. Let A, be an exact characteristic 

root of (1.1) and a simpl: pole of its resolvent, and let{X,) represent 
approximate characteristic values of the above equation, the values being 
obtained by the B.-G. method and such that A,-,&, when n - - . 
have the following estimate 

BY Cl] we. 

where C is a constant, and the maximum is taken over the whole of the nor- 
malized characteristic elements l c and Uc 
respectively, associated 

of Equations f,l.t.lda;d (1.2), 
ith the characteristic values respec- 

tively. From (1.3) it follows that the accuracy of the nth appro%mition to 
the characteristic value is determined by the closeness of approach of char- 
acteristic functions and their projectiohs on the linear envelope of 'the 

*) Subsequently called the B.-G. method. 
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elements I(,. . . . , {I,,. 
Let us now apply the B.-G method to the determination of characteristic 

values of the boundary value problem of a linear differential equation. We 
know [2] that in many cases, the system of algebraic equations of the B.-C. 
method of the above problem is equivalent to the system of the B.-G. method 
for some equations of the type (1.1) in a suitably chosen Hilbert space -. . 
This equivalence will assume a major importance in the proof of the conver- 
gence of the method. The inequality (1.3) shows that this equivalence can 
also be utilized in estimating the rapidity of convergence of characteristic 
values. Indeed the latter is dcttcrmincd by t!lc rapidity of convergence of 
the Fourier ser!es for the characteristic functions over the base functions 
in the norm of '! . As a rule we find, that the convergence in u is the 
convergence in mean together with the derivative up to some order. 

Consider for example a boundary value problem for 

(-- I)” 0 (I .4) 

where Pi (s) are sufficiently smooth functions, and the boundary conditions 
are 

(1.5) 

It can be shown [2 3 that the system of the B.-G. method for the problem 
(1.41, (1.5) over the set of base functions (n&(x)) satisfying (1.5) coin- 
cides with the system of the 8. -G. method for the Fredholm homogeneous inte- 
gral equation of the second kind with the continuous kernel, with respect to 
the function~~~l~~' over the base sequence (d%,/ dx*j. By (1.3). the func- 
tions 
dug, Ids4 

{uk} should be selected in such a manner, that the Fourier series for 
over the base (dsuk I dr’j strongly converges in the mean. 

In fact, such a selection is not always practical. Boundary functions in 
particular, in which the highest derivative has a small parameter, possess 
differential solutions which? as a rule, are much more complex, than the 
characteristic functions. Wathout the previous knowledge of the solution, 
it is very difficult to find a base sequence (ukf, for which the Fourier 
series mentioned above, would converge rapidly. It is much easier to achieve 
a rapid convergence in the mean if the series is in terms of 0 over [u,]. 

From this it follows that the approximate characteristic values will eon- 
verge to exact values faster, if a slightly different form of the B.-G. 
method is used, namely, if the equivalent B. -C. system for the integral 
equation considers the characteristic function itself, rather than its deri- 
vatives. This can be achieved either by t;le prior reduction of the boundary 
value problem to the integral equation of the given type, or by applying 
inst ad of the classical B.-G. method, its generalization proposed by Petrov 
[3], directly to the boundary value problem. In the latter case, the equi- 
valence condition leads to a definite relationship between the two bases of 
the B.-G .-Petrov method. We shall use the (1.4), (1.5) problem to illustrate 
this. Let a(~,@) be a Green's function for the operator (-~)Sd2srpjdx2* 
with (1.5) valid. Coefficients of the algebraic system of equations of the 
B.-G.-Petrov method over the bases {zQ,{ukj satisfying (1.51, will be of 
the form 

T#(h)= j [(-1)s ;;: 

2e -1 
diuk 

- - h, 21 qi (x) z] ijdx 

a i=l 

Integrating by parts 2s times so as to reduce the order of the deriva- 
tive in the first term and utilizing (1.5), we obtain 

Next, utilizing the properties of the Green's function, we eliminate the 
derivatives of ZIP integrating by parts the expressions contained within 
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the square brackets. If now we put 
b 

rj(')= g(', Y)uj(Y)dY 
s S.6) 
(I 

we shall see that Yjk&f are the coefficients of the system of the B.-Q. 
method for the integral equation, ref'erred to the function with the square 
integrable kernel ‘over the base functions {uk(Z)]. Hence, Formula (1.6) 
defines the already mentioned relationship between the two bases. 

2, When we apply the B.-G. method or the direct method to the problem on 
characteristic values, as a rule, reduces to the problem OS determining the 
roots 0S 8 polynomial, which is given in the determinant form. If the order 
of this determnnant is sufficiently high and no information is available on 
the distribution of its roots in the complex plane, then the process of 
root-finding becomes very involved. Deterylination of the coefficients of 
the polynomial poses the chief difficulty. A method suitable for computer 
processing is given below. 

Let A (?,.), be a determinant, the elements of which are functions of the 
complex parameter 1 and which can be calculated for any value of 
assume that this detekinant is an nth degree polynomial in 

X l We 

A (Iv) = pO + p$ + peLa + . . + p$' (2.1) 
. 

To find its coefficients 
. . . . n) 

pk (k = 0, 1,. . - t. 
all the solutions of the equation 

"), we denote by X, (J- 0, l,.. 
hn+l= 1, , i.e. 

hj = exp (i ns) (j = 0, i, I . ., n) (2.2) 
Obviously, hj = hf. IS we now put Aj= A (hj:, (i= &I,. . . , n), then the 

coefficients pr are defined by 

f’ P&j’=Aj 
k-0 

(i = 0,1,. . ., n) 

with Vandemondts matrix which is diSSicult to invert nUmeriC&lly. The 
system (2.3) with the nodes X, arbitrarily chosen, i8 known in the inter- 
polation theor 
mulas are not P 

4 , but Lagrange's, Newton's and other interpolation for- 
ound to be more suitable for calculating pr, than the direct 

solution of (2.3). 

We shall now show that when the nodes are chosen according to Formula 
(2.21, the system (2.3) possesses an exact general solution for any n and 

i% m:l~~',"l~h~"~~'~~u:~~onp~f (2.3) by h-j@ 
are simple and suitable Sot programing. Let 

rearranging the resulting equations, we obt..& 
where a is an integer. On 

h,@ A 
j 

Its left-hand side is a sum OS n + 1 
hence using (2.2). we obtain 

terms of a geometrical progreaaion, 

where b,, is a Kronecker delta. From (2.4) it now Sollows that 
n n 

P* = - t Iz 
n+1 

X~-jSAj= -'--x &jA. 
3 (s = 0, 1, *. ., n) 

j=o 
n-i-5 

j=O 
(2.5) 

where a superscript - denotes a complex conjugate. 
When (2.5) is used to work out the values of p. , 
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h,= “““$f+ - 
2ns 

i sin- 
n+l 

(s = 0, 1, . . ., n) 

should be used in the following manner: for p1 all the terms are used, for 

P2 every second term is used, for p3 every third term is used, and so on. 

A formula analogous to (2.5) is easily obtained if all the solutions of 
the equation A"++'= Rn+l, where R >O are taken as nodes. In this case 

(2.6) 

where A, is again defined by (2.2). 

3. Let us now consider a problem on the linear stability of a plane Poi- 
seuille flow with respect to plane perturbations, where the stream function 
is symmetrical with respect to the axis of the channel. We know [5] that 
this problem can be reduced to the problem on characteristic values for 
Equation 

cp 
IV - 2a*#' + a4cp - iaR [ (1 - xl - c) (9” - a%p) + 2~1 = 0 (3.1) 

with the boundary conditions 

'p' (0) = q"' (0) = cp (1) = cp' (1) = 0 (3.2) 

Here cc(x) and amplitude and the wave number of the a are the;tmpB ; 
perturbations, respectively; R is the Reynolds number; 
c=c +ic. 
with'time.' 

is a parameter associated with the development of perturbations 
The problem under discussion is set in terms of this parameter. 

All the magnitudes are dimensionless, lengths are expressed in terms of 
semi-width of the channel and the velocities in terms of maximum velocity 
of the basic stream. 

The above problem has already been investigated [5 and 71. In particular, 
the authors of [7]used the B. -G. method and the base f,unctions recommended 
by (33; small part of the neutral curve was calculated with an acceptable 
accuracy only in the 20-th approximation. 

To check the formulas developed in Sections 2 and 3 of this paper,we shall 
use two methods for the problem (3.11, 13.2.). 

1. B.-G. method with the base function set consisting of polynomials 
of even power, satisfying the boundary conditions. To make integration 
easier, we shall write these functions as 

where 

Pak +a fx) 2 (4k + i) P$,k fx) Pak -3 tx) 
Uk(x) = 4k+3 - (4k-1)(48+3) + 4k-- (3.3) 

1 da’ 
Pak(")= sk - 

sk 
sk (x"- ') (k = 1,"2, . ..) (3.4) 

2 (2k)I dx 

are Legendre polynomials. It is easy to show that the method converges if 
the system (u,") is complete in the mean in the class of functions orthogo- 
nal to a constant and square integrable over the interval (0.1). 

It is easily seen that (3.3) possesses the above properties. 

2. B.-G. method with the same base functions, but applied to the inte- 
gral equation in p(r)equivalent to (3.1),(3.2) or, 
B.-G. method with two sets of base functions namely 
first of which is obtained from (3.3), while the second one from the condii 
tion 

IV= 
‘k Uk’ 

Vk) (0) = vk”’ (0) = Vk (1) = vk) (1) = 0 

The completeness in the mean of the function {u,)over the interval (0.1) 
is the sufficient condition for the convergence of the method, and is ful- 
filled here. 



Calculation of ct,a,.octxr*l:tlc valu, :i by LIuLnov-Cnl,~rkln mthod 

Table 1 
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5 0.2637 0.2542 
n mm I 

0.0199 0.0295 -0,0295 87 0.2341 . ..___v 
n~niiii I 
0.0062 _.__-- 1 

-0.0156 
-ti:C 0Jglkl; 

-0.c 
IO45 -0.0093 

1: 
Mlfi I 0.0042 

-0.0019 _...- [ 
-0.00: 
o.oOE 

Table 2 

Characteristic determinants obtained by the above methods were calcula- 
ted using the method shown in Section 3 up to and including the 10th approxi- 
mation. Roots of the resulting polynomials were found by the method of 
parabolas [8], or Newton's method was used where required to improve accuracy 
of the final results. Calculations were performed on a computer. 

In the first series of calculations, 
characteristic values of o for c = 1 
and A = 10000 were obtained in order 
to compare the methods 1 and 2, and to 
compare the results with those of 
Thomas i6] 

Method 1 did not lead to any se- 
quence of characteristic values pos- 
sessing a usable convergence. Method 
2 on the other hand gave (see Table 1) 
a characteristic value with the rela- 

Fig. 1 tive accuracy less than 1%. Table 2 
shows the calculated characteristic 

(the latter denoted by T ). 
values against those of Thomas [6] 

The aim of the second series of calculations was to investigate how the 
value of R infuences the rate of convergence of method 2. With R = 100, 
a=l, first 10 approximations gave first five characteristic numbers with 
the relative accuracy of about 0.15, while R = 1000, Q = 1 , gave three 
characteristic numbers. 

The last series of results was used to construct a neutral curve 
ci (a, R) = 0 
Fig.1). 

in the 8th and 10th approximations according to method 2 (see 
Characteristic values were calculated for maximum values of ci at 
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the points c , i) of the plane as shown on the figure. Points of the neu- 
tral curve were obtained by interpolation. For comparison, a neutral curve 
obtained by Lin' [5] is also shown on the graph. 
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